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We consider a fermionic quantum system exchanging particles with an environment at a fixed temperature and
study its reduced evolution by means of a Redfield-I equation with time-dependent (non-Markovian) coefficients.
We find that the description can be efficiently reduced to a standard-form Redfield-II equation, however, with
a time-dependent effective bath temperature obeying a universal law. At early times, after the system and
environment start in a product state, the effective temperature appears to be very high, yet eventually it settles
down towards the true environment value. In this way, we obtain a time-local master equation, offering high
accuracy at all times and preserving the crucial properties of the density matrix. It includes non-Markovian
relaxation processes beyond the secular approximation and time-averaging methods and can be further applied
to various types of Gorini-Kossakowski-Sudarshan-Lindblad equations. We derive the theory from first principles
and discuss its application using a simple example of a single quantum dot.
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I. INTRODUCTION

When dealing with open quantum systems [1] interact-
ing with an infinite environment, exact solutions can be
found in some special cases [2–11]. However, as soon as
any interactions, such as Coulomb, are present it becomes
almost impossible to solve them exactly [2,12–14]. In order
to explore the system alone, it is possible to eliminate the
baths from the description and obtain a formally exact time-
nonlocal (non-Markovian) master equation [15–20] for the
quantum system which contains information about the full
history including the formation of coherences between the
environment and the system [1,6].

At the lowest order of perturbation theory in the system-
bath coupling, using the (first) Markov assumption, it can be
approximated by the time-local master equation for the sys-
tem’s density matrix with time-dependent (non-Markovian)
coefficients, known as the Redfield-I equation [1,21]. It
does not include the history of the system and of the
bath but its time-dependent coefficients maintain residual in-
formation about the formation of coherences between the
environment and the system. The latter is related to non-
Markovian effects present also in unstructured environments
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(e.g., such as the wide-band limit) which are usually treated
as Markovian. Although the Redfield-I equation offers a
good approximation of the system dynamics [22] it is also
known for its mathematical problems, originating in the
first-order time-dependent perturbation theory, of not pre-
serving the positivity of the density matrix which may
result in negative probabilities and nonphysical behavior of
observables [22–27].

Partially these problems are related to the transition rates
of the system described by the time-dependent coefficients,
which we denote symbolically F�E ,TB (t ) (for transition en-
ergy �E and temperature TB), showing excessive oscillations
and becoming temporarily negative (problem 1). In order
to remove the oscillations, an additional approximation ex-
tends the initial integration time to the infinite past (t0 →
−∞) by which the resulting Liouville operator becomes time
independent and gives the (now Markovian) Redfield-II mas-
ter equation with static and positive coefficients F�E ,TB (∞).
Those, however, show another problem (the more popular
one of the two, regarding literature): not only single coef-
ficients F�E ,TB but also their (matrix-valued) combinations,
involved in generic transitions with different transition en-
ergies �E , can lead to excess coherences between energy
states and thus also violate the positivity of the density matrix
(problem 2) [22–27].

A standard, however drastic, way to deal with the latter
problem is the secular approximation [1,28] that artificially
removes energy coherences from the system by which the
master equation attains the Gorini-Kossakowski-Sudarshan-
Lindblad (GKSL) form which preserves all important prop-
erties of the density matrix [1,29–31]. However, the secular
approximation is known to miss some important physical
information about coherences between energy states in the
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system, as demonstrated, e.g., in [26,27,32–34]. Along similar
lines as in [35–38], in [26,34] we proposed a refined method
of coherent approximation which allows to keep the mathe-
matically maximal amount of coherences in the system, also
leading to a GKSL equation. In addition, there exist further
regularization methods [37,39–42] which also lead to GKSL
master equations. Due to their simplicity and direct interpre-
tation of the jump operators, the GKSL master equations can
be usually derived from phenomenological [26,36] or
microscopic [22,26,37,39,40] points of view.

However, due to their Markovian behavior, the GKSL
equations neglect memory effects and relaxation dynamics
of the environment as well as effects related to the forma-
tion of coherences between the environment and the system.
In particular, neglecting the time dependence of the coeffi-
cients leads to a loss of accuracy at short times which can
be partly compensated by the “initial slip” method, artifi-
cially adjusting the initial state of the system to the later
development [24,25,43]. The behavior at short times has
been also discussed in the context of time-local master equa-
tions [37,40,44–46]. One popular approach which deals with
the problem of time-dependent coefficients is the dynam-
ical coarse graining (DCG) method [44]. It improves the
behavior at short times and preserves the properties of the
density matrix. However, due to the averaging character of
the coarse graining, this method becomes similar to the
secular approximation for late times, affected by the above-
mentioned problems.

In Ref. [22], various master equations have been compared
with exact solutions. The general conclusion was that “the
simple Redfield-I equation with time-dependent coefficients
is significantly more accurate than all other methods.” There-
fore, we take it as a natural starting point to study a generic
tunnel coupling between the system and a fermionic envi-
ronment. Studying the time-dependent coefficients F�E ,TB (t )
in more detail, we realized that their defining integrals,
parametrized by the time t , temperature TB, and energy dif-
ference �E , can be very accurately and uniformly in all
three parameters approximated by a simple family of func-
tions F�E ,TB (t ), obtained by approximate calculation of their
defining integral. A surprising observation is that the result
has again the form of the static coefficients F�E ,T (t )(∞) with
now time-dependent temperature

T (t ) = TB

/
tanh

(
4kBTB

h̄π
(t − t0)

)
. (1)

It is universal in the sense that it depends only on the true bath
temperature TB, the Boltzmann and Planck constants kB and h̄,
the initial time t0 and time t but not on the energy differences
�E nor on any details of the system or the coupling. It has
the properties that T (t0) → ∞ and T (∞) → TB. The replace-
ment TB → T (t ) leads to a modified Redfield-I equation with
time-dependent coefficients, known analytically for all values
of parameters �E , TB, and t and satisfying all relevant limit-
ing cases. Most importantly, the time-dependent temperature
solves problem 1 since it removes both excessive oscilla-
tions and negative values by ensuring 0 � F�E ,T (t )(∞) � 1.
It can be naturally combined with the regularization methods,
discussed above, to solve problem 2 thus bringing the equa-
tion into a time-dependent GKSL form.

The time-dependent temperature T (t ) can be interpreted
as an effective bath temperature from the perspective of
the system. It is conceptually different from time-dependent
quasiequilibrium temperatures of the system discussed in
[47–50] or time-dependent bath temperatures for finite-size
baths discussed in [51–53]. In our case, the time dependence
of T (t ) is related to the energy gain [T (t ) � TB] resulting
from the coupling between the system and the bath.

The main goal of this paper is to propose a universal ap-
proach in the form of a time-local master equation, offering
high accuracy at all times and preserving the properties of the
density matrix, which includes non-Markovian relaxation pro-
cesses beyond the secular approximation and time-averaging
methods.

II. MODEL

In the following, we will focus on fermionic systems
and fermionic environments which can exchange particles.
We consider a finite quantum system described by the
Hamiltonian written in its Fock eigenbasis

HS =
dim(S)∑

l=1

El |El〉 〈El | (2)

coupled to M fermionic baths, described by the Hamiltonian

HB =
M∑

m=1

∑
k

εm,k b†
m,k bm,k, (3)

via the coupling Hamiltonian

HC =
M∑

m=1

∑
k

γm,k c†
m ⊗ bm,k + H.c. (4)

(brought to the tensor product form via the Jordan-Wigner
transformation [54]). Here, c†

m and cm are fermionic cre-
ation and annihilation operators in the system,1 respectively,
whereas b†

m,k and bm,k are the fermionic creation and annihi-
lation operators, respectively, at bath m in the mode k which
are associated with the energy εm,k and satisfy {bm,k, b†

n,l} =
δmnδkl , {bm,k, bn,l} = 0. The coefficients γm,k give the tunnel-
ing amplitudes between the system and the mode k in the bath
m. The total Hamiltonian reads then

H = HS ⊗ 1B + 1S ⊗ HB + HC . (5)

We assume that the dimension of the system, dim(S), is small
compared to the number of degrees of freedom of the baths,
dim(S) � dim(B). This justifies the treatment of the system
as open, coupled to the much larger environment, which shall
be subsequently eliminated from the description. We assume
also that the full system begins its evolution at time t = t0 in a
product state described by the density matrix ρ(t0) = ρS (t0) ⊗
ρB(t0) where ρS (t0) refers to the system while

ρB(t0) ∼ e−(HB−μ
∑

m,k b†
m,kbm,k )/(kBTB ) (6)

refers to the baths at thermal equilibrium (Gibbs state)
with temperature TB and chemical potential μ and satis-
fies [HB, ρB] = 0. For unequal chemical potentials μm and

1The case where more than one bath, e.g. m = 1, 2, . . . , M1 � M,
is coupled to the same system mode can be described by the formal
substitution c1 = c2 = . . . = cM1 .
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temperatures TB,m, the presented method can be applied analo-
gously giving rise to separate effective temperatures Tm(t ) for
each bath m.

For a Hamilton operator of the form (5), in Sec. III
we will derive a time-dependent Redfield equation includ-
ing time-dependent coefficients. In Sec. IV, we will discuss
these coefficients and identify that their excessive oscillations
lead to nonphysical effects. Furthermore, we will demonstrate
that the time-dependent coefficients can be interpreted, to
a very good approximation, as the static coefficients with
a time-dependent effective temperature T (t ). Using this in-
terpretation, we will find a time-local master equation with
positive time-dependent coefficients.

As the simplest example, demonstrating the application
of the method, we will consider a single quantum dot with
Coulomb interaction coupled to a fermionic bath in which the
problems of the time-dependent Redfield-I equation become
already apparent. In Sec. V, we will compare the solutions of
the Redfield-I equation to its version using the time-dependent
temperature and to static GKSL equations. In Sec. VI, we
will compare the above approximation schemes with exact
solutions obtained for a non-Coulomb-interacting quantum
dot.

III. TIME-DEPENDENT REDFIELD EQUATION

In order to effectively eliminate the environment from
the description, we apply the Born and the first Markov ap-
proximations to the bath and the system evolution and, by
tracing out the baths’ degrees of freedom in the von Neumann
equation expanded to the lowest nonvanishing order in the
system-bath couplings, O(|γm,k|2), we arrive at the Redfield-I
master equation [1,21]

∂tρI(t )

= −
∫ t−t0

0
dτ trB[HC,I (t ), [HC,I (t − τ ), ρS,I (t ) ⊗ ρB(t0)]].

(7)

The index “I” indicates the interaction picture with respect to
the coupling Hamiltonian HC . Furthermore, we set h̄ = 1 for
convenience.

With the baths in thermal equilibrium, satisfying
〈b†

m,kbm′,k′ 〉 = δk,k′δm,m′ f+(εm,k, TB), and the Fermi function
f±(E , TB) = [1 + exp{±(E − μ)/(kBTB)}]−1, the Redfield-I
master equation, now in the Schrödinger picture, can be also
written in the form

∂t ρ(t ) = −i [HS, ρ(t )] + Lt ρ(t ) (8)

with the superoperator Lt acting in the full Liouville space
which is, in general, not positivity preserving.2 It can be split
into two parts, Lt = −i[δHS (t ), ·] + L̃t , of which the first
can be included in the “renormalized” (or “Lamb-shifted”)

2Positivity of the superoperator L means the map Ut ≡
T̂ exp (

∫ t
0 dτ Lτ) preserves the positivity of the density matrix ρ(t ) =

Utρ(0) for all t � 0. It is also required that L preserves the
trace of ρ.

Hermitian, possibly time-dependent Hamiltonian

H̃S (t ) = HS + δHS (t )

= HS − i
∑

m,α�E ,�E ′

Aα
m(t,�E ) − Aα

m(t,�E ′)
4

× Kα
m (�E ′)†Kα

m (�E ) (9)

with

K±
m (�E ) =

∑
k,l

δEk−El ,±�E |Ek〉〈Ek|c±
m |El〉〈El | (10)

and

A±
m (t,�E ) = 2

∫ t−t0

0
dτ
∑

k

|γm,k|2 f±(εm,k, TB) e±i(εm,k−�E )τ

=
∫ t−t0

0
dτ

∫ ∞

−∞

dω

π
�m(ω) f±(ω, TB) e±i(ω−�E )τ ,

(11)

where we introduced c−
m = cm, c+

m = c†
m, and �m(ω) =

2π
∑

k |γm,k|2δ(ω − εm,k ). Since the bath’s spectrum should
be dense, in the following we will assume that �m(ω) becomes
a continuous function with an effective bandwidth �� [27].
Since this will restrict our further considerations to times
t − t0 � 1/�� it should be assumed that 1/�� is shorter than
any other relevant timescale. For simplicity of the presenta-
tion, we will consider here only the wide-band limit �� → ∞
with constant �m(ω) = �m for all energies ω (cf. Appendix B
for a discussion). �E refers to all possible differences of
eigenenergies of the system Hamiltonian HS while α = ±
refers to creation (+) and annihilation (−) processes.

The Redfield-I equation becomes

∂tρ = −i[H̃S, ρ] + L̃t ρ (12)

with the new Liouville superoperator

L̃tρ =
∑
m,α

�E ,�E ′

Mα
m(t,�E ,�E ′)Lα

m(�E ,�E ′) ρ, (13)

including the coefficients

Mα
m(t,�E ,�E ′) = Aα

m(t,�E ) + Aα
m(t,�E ′)

2
(14)

and the superoperators

Lα
m(�E ,�E ′)ρ = Kα

m (�E ) ρ Kα
m (�E ′)†

− 1
2

{
Kα

m (�E ′)†Kα
m (�E ), ρ

}
. (15)

The indices m, α refer to the effective relaxation channels. The
total Liouville superoperator L̃t does not necessarily preserve
the positivity of ρ, as explained in Sec. I. The coefficients
Mα

m(t,�E ,�E ′) are time dependent due to integration over
a finite history between the starting point at t = t0, when the
system and the bath were prepared in a product state, and the
current time t .

In the standard scheme, the coefficients are stabilized by
the (second) Markov approximation, shifting the starting point
of the evolution to t0 → −∞. By integrating over the infinite
history, the theory becomes Markovian. The coefficients re-
duce to constants depending only on the Fermi distribution
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FIG. 1. Solid lines show the real part F+
�E ,TB

(t ) (top) and the
imaginary part G�E ,TB (t ) (bottom) of the coefficients A+

m (t,�E )
as functions of �E in units of kBT . The dashed lines show the
approximations based on the time-dependent temperature T (t ), the
real part F+

�E ,TB
(t ) (top), and the imaginary part G�E ,TB (t ) (bottom).

Different colors correspond to various times t . For t = 0 (red) and
t → ∞ (black), the solid and dashed lines match together. The
original real parts F+

�E ,TB
(t ) overshoot the interval [0,1] while their

approximations stay within it.

of the bath leading to the Redfield-II equation. It provides
the staring point for further approximations, e.g., the secular,
coherent, or other approximations [26,34,36–42], leading to
various versions of the GKSL equation (cf. Appendix A).

IV. TIME-DEPENDENT TEMPERATURE

A. Real part of A±
m(t,�E )

Here, we first stay with the Redfield-I equation and look
closer at the time dependence of the coefficients A±

m (t,�E ).
In the wide-band limit (for non-wide-band cf. Appendix B),
the real part of (11) becomes

�mF±
�E ,TB

(t ) = Re A±
m (t,�E ), (16)

where

F±
�E ,TB

(t ) ≡ 1

2
∓ kBTB

∫ t−t0

0

sin[(�E − μ)τ ]

sinh(πkBTBτ )
dτ. (17)

For kBTB � |�E − μ|/4 the factors F±
�E ,TB

(t ) show excessive
oscillations and become negative or larger than one for times
t ∼ 1/|�E − μ| (cf. solid lines in Fig. 1, top). This leads
to the above-mentioned problems of the Redfield equation
(cf. Sec. I) resulting in violation of the positivity of the density
matrix (cf. also Sec. V for particular examples).

At the initial time, F±
�E ,TB

(t = t0) = 1
2 is independent of the

energy difference �E and temperature TB. This corresponds
to the Fermi function f±(�E ,∞) = 1

2 at infinite tempera-
ture. The Redfield equation (12) simplifies then to the GKSL
equation (cf. Appendix A) coupled to infinitely hot baths with
Lm,− = cm/

√
2 and Lm,+ = c†

m/
√

2, where Lm,± are functions
of cm and c†

m only. In case when different cm’s correspond to
separate sites m then these Lindblad operators become fully
local.

If t − t0 is large compared to the characteristic timescale

τc = min

(
1

kBTB
,

1

|�E − μ|
)

(18)

given by the smaller of the inverse thermal energy and the
inverse energy distance to the chemical potential, the integral
(17) converges and the coefficients

F±
�E ,TB

(t � τc) ≈ f±(�E , TB) (19)

approach the Fermi function for the bath temperature TB.
Our main finding, from the technical point of view, is

that the integral in (17) can be uniformly in t, �E , and TB

approximated by the function

I = kBTB

∫ t−t0

0

sin[(�E − μ)τ ]

sinh(πkBTBτ )
dτ (20)

≈ 1

π
Si

[
π (�E − μ)

4kBTB
tanh

(
4kBTB(t − t0)

π

)]
, (21)

with Si being the sine integral, Si(x) = ∫ x
0 sin(u)/u du. It

relies on the astonishing similarity (C1) discussed in Ap-
pendix C 1 (cf. Fig. 8) and offers a good approximation when
TB(t − t0) � π/4. It still shows the unwanted excess oscilla-
tions as in original F±

�E ,TB
(t ) (cf. Fig. 1). These can be most

clearly observed in the limit TB → 0 when (21) becomes exact

I =
∫ t−t0

0
dτ

sin[(�E − μ)τ ]

πτ
= Si[(�E − μ)(t − t0)]

π
(22)

and can assume values out of the range [− 1
2 , 1

2 ] which may
lead to negative values of F±

�E ,TB
(t ) in (17). Therefore, in the

last step, we replace the sine integral function by tanh which
has a similar form but stays bounded in the proper region
without any oscillations (cf. Fig. 10), by which we arrive at

I ≈ 1

2
tanh

[
�E − μ

2 kBTB
tanh

(
4 kBTB(t − t0)

π

)]
(23)

(cf. Appendix C 2 for the full derivation).
In the limit t → ∞, the approximation (23) becomes an

equality [with the inner tanh(∞) = 1] and inserted into (17)
delivers3 the static Fermi function (19). By inserting the full
approximation obtained in (23) into the formula (17) and
denoting the approximated coefficients as F±

�E ,TB
(t ) we find

that the result can be recast as a Fermi function, too (cf.
Fig. 1, top)

F±
�E ,TB

(t ) ≈ F±
�E ,TB

(t ) ≡ F±
�E ,T (t )(∞) = f±(�E , T (t )),

(24)

3Due to the identity 1
2 ∓ 1

2 tanh[(�E − μ)/(2kBTB)] = f±(E , TB).
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FIG. 2. Evolution of the time-dependent effective temperature
T (t ) for various temperatures of the bath TB.

now with a modified, time-dependent temperature

T (t ) = TB

/
tanh

(
4kBTB

π
(t − t0)

)
(25)

(cf. Fig. 2).
The effective temperature T (t ) is universal, i.e.,

independent of �E . It diverges at short times,

T (t ) ≈ π

4kB(t − t0)
≡ T0(t ) for t − t0 � 1

kBTB
(26)

and converges to the true bath temperature T (t ) → TB for
late times t → ∞ (cf. Fig. 2). We will refer to it as the
time-dependent effective bath temperature, for it is described
by the effective bath temperature from the perspective of the
system. The origin of its time dependence is in the contact of
the system with the environment at t = t0 and the buildup of
correlations (which were assumed to be absent for t < t0). It
originates in short time off–resonant (virtual) transition pro-
cesses between the bath and the system involving an energy
range close to the Fermi–level, proportional to the inverse of
the characteristic time of the associated oscillations, which
scales as (t − t0)−1, staying independent of other parameters,
such as � or TB. Also for later times, T (t ) cannot depend on
the coupling strength � because we keep only the lowest-order
terms in (7) and hence � automatically factorizes in (11) and
(16) and plays only the role of a scaling factor.

The approximate coefficients directly satisfy three impor-
tant limiting cases, for t → ∞, t → 0, and TB → ∞, which
can be directly obtained from the integral (17) and the fourth
limiting case, for TB → 0, which resolves the problem of
excess oscillations observed in (22) and replaces the result
with a nonoscillatory function,

F±
�E ,TB

(t → ∞) = 1

2
∓ 1

2
tanh

�E − μ

2kBTB
= f±(�E , TB),

F±
�E ,TB

(t → 0) = 1

2
= f±(�E ,∞),

F±
�E ,TB→∞(t ) = 1

2
= f±(�E ,∞),

F±
�E ,TB→0(t ) = 1

2
∓ 1

2
tanh

2(�E − μ)(t − t0)

π

= f±(�E , T0(t )), (27)

where T0(t ) is given in (26). In all cases F±
�E ,TB

(t ) stays in the
required range [0,1] (cf. dashed lines in Fig. 1, top).

B. Imaginary part of A±
m(t,�E )

After we have considered the real part of A±
m (t,�E ) we

next focus on its imaginary part. In the wide-band limit,
Im A±

m (t,�E ) diverges. However, (9) and (14) contain only
differences, Im A±

m (t,�E ) − Im A±
m (t,�E ′), which are finite.

Therefore, we define

�mG�E ,TB (t ) = Im A±
m (t,�E ) − Im A±

m (t, μ) (28)

(which is independent of ±) by choosing a universal value
�E ′ = μ for the counterterm and obtain

G�E ,TB (t ) ≡ kBTB

∫ t−t0

0

1 − cos[(�E − μ)τ ]

sinh(πkBTBτ )
dτ. (29)

Applying similar approximations as for the real part of
A±

m (t,�E ) we find

G�E ,TB (t ) ≈ 1

π
Re

[
ψ

(
1

2
+ i

�E − μ

2πkBT (t )

)
− ψ

(
1

2

)]
(30)

with the same effective temperature T (t ) as in (25) (cf.
Fig. 1 and Appendix C 3) and ψ (x) the digamma function
[55, Sec. 6.3]. Denoting the right-hand side by G�E ,TB (t ), we
arrive, in full analogy to (24), at

G�E ,TB (t ) ≈ G�E ,TB (t ) ≡ G�E ,T (t )(∞). (31)

This confirms that the same effective temperature T (t ) can be
used in both the real and the imaginary parts of A±

m (t,�E ).
In the next two sections, V and VI, we will consider

a simple system consisting of a single quantum dot in or-
der to compare the different approaches analytically and
numerically:

(i) exact solutions (for the noninteracting system);
(ii) Redfield-I equation with time-dependent coefficients

F±
�E ,TB

(t ) leading to positivity problem 1 due to overshooting
the range [0,1];

(iii) modified Redfield-I equation with approximate
coefficients F±

�E ,TB
(t ) ∈ [0, 1] based on time-dependent

temperature T (t );
(iv) Redfield-II equation with static coefficients

F±
�E ,TB

(∞) ∈ [0, 1],
summarized in Table I. We will concentrate only on the
real part F±

�E ,TB
(t ) since the imaginary part G�E ,TB (t ) will

not be significant for that system. For larger systems than
one quantum dot, we would also deal with the problem 2
of nonpositivity of some 2 × 2 matrix valued coefficients,
M � 0, in which case we might want to further approximate
the Redfield-I and -II equations to the Lindblad form with
modified M̃ � 0 (cf. Appendix A).

V. EXAMPLE: SINGLE QUANTUM DOT

Here, we consider a simple system to demonstrate the ap-
plication of the above proposed approximation method based
on the time-dependent temperature. We choose a single quan-
tum dot described by the Anderson impurity model [56]

HS = Un↑n↓ + ε(n↑ + n↓) (32)
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TABLE I. Overview of the discussed approximation schemes. The constants μ and t0 were set to zero for brevity.

Approach Coefficients Value For TB = 0

Redfield-I F±
�E ,TB

(t ) 1
2 ∓ Si(�Et )/π

Modified Redfield-I F±
�E ,TB

(t ) = f±(�E , T (t )) 1
2 ∓ 1

2 tanh
[

�E
2 kBTB

tanh
( 4 kBTBt

π

)]
1
2 ∓ 1

2 tanh
(

2�Et
π

)
Static Redfield-II F±

�E ,TB
(∞) = f±(�E , TB) 1

2 ∓ 1
2 tanh

(
�E

2 kBTB

)
�(−�E )

with ns = c†
s cs, spin s =↑, ↓, Coulomb interaction U > 0,

and onsite energy ε, satisfying −U < ε − μ < 0. The sys-
tem has dim(S) = 4 eigenstates [cf. (2)] and is connected
to M = 2 baths with different spin polarizations [cf. (3) and
(4)]. Both in the static (second) Markov approximation, for
t0 → −∞, as well as in the time-dependent effective tem-
perature approximation, with t0 = 0, (12) reduces to a GKSL
equation (cf. Appendix A) with the Lindblad dissipators (A5)
or (A7) (which differ only by nonphysical coherences between
states with different occupation numbers)

L±
s,1 =

√
f±(ε, T̃ (t )) c±

s (1 − ns̄), (33)

L±
s,2 =

√
f±(ε + U, T̃ (t )) c±

s ns̄, (34)

for tunneling in or out (±) of the first (33) and second electron
(34) with spin s. The temperature T̃ (t ) in the Fermi functions
f± is either constant and equal TB or time dependent as given
by (25). In the static case, for TB = 0, the states |↑〉〈↑| and
|↓〉〈↓| are “frozen.” However, the time-dependent effective
temperature T (t ), even for TB = 0, becomes initially large,
T (t ≈ 0) → ∞ [cf. (26)] and the system is temporarily driven
towards the fully mixed “hot” state

ρ∞ = 1

4

[
|0〉〈0| + |↑〉〈↑| + |↓〉〈↓| + |↑ ↓〉〈↑ ↓|

]
. (35)

Eventually, as T (t ) → TB = 0, it relaxes to some mixture
a|↑〉〈↑| + b|↓〉〈↓| with a + b = 1. Starting with the pure
state |↑〉〈↑|, the final spin-z 〈Sz〉 = (a − b)/2 will measure
how strong the influence of the “hot” period on the effec-
tive dynamics was. This observable satisfies an autonomous
differential equation4 (valid for any TB)

Ṡeff
z (t ) = −�

[
1 − f+(ε, T (t )) + f+(ε + U, T (t ))

]
Seff

z (t )

(36)

which can be integrated to

Seff
z (t ) = Sz(0) exp

[
−2�

∫ t

0
dt ′ f+(ε + U, T (t ′))

]
, (37)

where we have chosen the special value ε = μ − U/2 for
convenience. For TB > 0 this integral is difficult to calculate
but it diverges for t → ∞ and thus leads to Sz(∞) = 0. For
TB = 0, we have kBT (t ) = π/(4t ) [cf. (25)] and this integral
can be calculated exactly to give

Seff
z (t ) = Sz(0) e−2�t

(
1 + e

2U
π

t
) �π

U
2−π �

U (38)

4If L̃†
t is time dependent, ȦH(t ) = L̃†

t AH(t ) is generally not cor-
rect for any operator AH in the Heisenberg picture. However, if the
equation is autonomous, then it holds true.

which for t � 1/U has the limit

Seff
z (t ) ∼= 2−π�/U Sz(0). (39)

It means that the initial spin-z, Sz(0), decays in a nonpertur-
bative way, which is enhanced by the system-bath coupling �

and suppressed by the Coulomb repulsion U . This is in con-
tradiction to the observation that both pure states are “frozen”
in the static (second) Markov case.

Also for the not approximated Redfield-I master equa-
tion (12) the spin-z can be calculated analogously to (37)

Sz(t ) = Sz(0) exp

[
−2 �

∫ t

0
F+

�E=ε+U,TB
(t ′) dt ′

]
. (40)

In this particular system and for TB = 0 the integral can be
evaluated exactly and gives

Sz(t ) = Sz(0) e−�t exp

{
4 �

πU

[
cos

(
Ut

2

)
− 1

]

+ 2 � t

π
Si

(
Ut

2

)}
(41)

which for t � 1/U gives

Sz(t ) ∼= e−4 �/(πU )Sz(0). (42)

Due to 2−π�/U < e−4 �/(πU ), the approximation with the ef-
fective temperature (39) slightly overestimates the effect
compared to the prediction of the Redfield-I master equa-
tion (42), however, both stay within the same order of
magnitude which justifies the effective temperature approxi-
mation (cf. Fig. 3). On the other hand, the Redfield-I master
equation (12) does not preserve the positivity of the density
matrix (cf. Sec. IV) and leads to negative probability, as
shown in Fig. 3 (second from bottom) whereas the effec-
tive temperature approximation is free of this problem. For
bath temperatures TB > 0, both results decay to Sz(∞) = 0
at late times. However, at short times, t � τc, and small
bath temperature TB, the Redfield-I master equation and the
effective temperature approximation give Sz(t ) ∼ exp(−�t )
while in the static approximation the decay is exponentially
suppressed, Sz(t ) ∼ exp

(−2 �e−U/(2kBTB )t
)
.

By a similar mechanism, the effective temperature can even
lead to an excitation of the ground state and deposit energy
into the system. By adding a magnetic field in the z direction
with the Hamiltonian Hz = 2BSz we obtain together with (32)

HS = Un↑n↓ + (ε + B)n↑ + (ε − B)n↓ (43)

and lift the degeneracy between the |↑〉 and |↓〉 states. We
choose TB = 0 and start in the ground state ρS (0) = |↑〉〈↑|
(for B < 0). By connecting the system with the bath at
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FIG. 3. One quantum dot. Top pair: spin 〈Sz(t )〉 as a func-
tion of time for the static Markov and the effective tem-
perature approximations as well as for the Redfield-I master
equation (12). The Coulomb interaction is U = 3 �, the on-
site potential is ε = μ − U

2 , and the bath temperature is TB =
0 or kBTB = U/8. The initial state is ρS (0) = |↑〉〈↑|. Bottom
pair: probability of the double occupation 〈ρ〉↑↓(t ) ≡ 〈↑↓|ρ(t )|↑↓〉
as a function of time, here identical with the zero occupation
〈ρ〉0(t ) ≡ 〈0|ρ(t )|0〉. Both can get negative for the Redfield equa-
tion. The energy, given by 〈HS − μN〉 = U [〈ρ〉↑↓ + 〈ρ〉0 − 1]/2
with N = n↑ + n↓, also swings below its theoretical lower limit
−U/2 for TB = 0. The parameters are the same as for 〈Sz(t )〉,
respectively.

FIG. 4. One quantum dot. Spin 〈Sz(t )〉 (top) and energy
〈HS (t ) − μN (t )〉 with N = n↑ + n↓ (bottom) as functions of time
for the static Markov and the effective temperature approximations
as well as for the Redfield-I master equation (12). The Coulomb
interaction is U = 3 �, the onsite potential is ε = μ − U/2, the bath
temperature is TB = 0, the magnetic field is B = −�/2, and the
initial state is ρS (0) = |↑〉〈↑| (ground state).

t = t0 = 0, due to the high effective temperature T (t ) at short
times, there will be an increase of energy in the system

�HS = HS (∞) − HS (0) = 2B[Sz(∞) − Sz(0)] (44)

(cf. Fig. 4). Although the bath and the system were initially
in their respective ground states, the increase of energy, �HS ,
results from the coupling Hamiltonian HC . In the limit of weak
B, it can be evaluated to

�HS = |B|(1 − e−4 �/(πU )
)+ O

(
B2

U

)
(45)

for the Redfield-I master equation (12) and to

�HS = |B|(1 − 2−π�/U
)+ O

(
B2

U

)
(46)

for the effective temperature approximation, where again the
latter method slightly overestimates the result.

VI. NONINTERACTING QUANTUM DOT AS BENCHMARK

Since the proposed effective temperature method is an
approximation to the Redfield equation which in turn is
also an approximation itself, it does not provide a proper
benchmark for testing the accuracy. Especially in the sit-
uations when the Redfield equation leads to mathematical
problems the comparison is unclear. Therefore, we consider
here the noninteracting case with U = 0 which is exactly
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solvable and compare the different master-equation ap-
proaches with it.

Without the Coulomb interaction, the system splits into two
identical copies of a spinless system

H = ε n +
∑

k

(γkc† bk + H.c.) +
∑

k

εkb†
kbk (47)

with n = c†c. Starting from the Heisenberg equation of
motion and Laplace transformation technique [8,10], it is

possible to express the annihilation operator of the dot in the
Heisenberg picture

cH(t ) = e−iεt− �
2 t cH(0) +

∑
k

γkbk

(
e−iεt− �

2 t − e−iεkt

(ε − εk ) − i �
2

)
(48)

in terms of the operators c = cH(0) and bk in the Schrödinger
picture. Assuming an initial product state between the dot and
a Fermi distributed bath leads to

〈n(t )〉 = e−�t 〈n(0)〉 + �

∫ ∞

−∞

dω

2π
f+(ω + ε, TB)

e−�t + 1 − 2 cos(ωt )e− �
2 t

ω2 + �2

4

. (49)

Figure 5 compares the exact solution (49) and the differ-
ent master equations as functions of time. Due to forbidden
energy transitions for ε > μ and TB = 0, the static approxi-
mation leads to no dynamics when starting with an initially
empty dot while in all other approaches we observe relax-
ation at short times t � τc. Similarly to Fig. 4, in Fig. 5
we observe an energy gain (ε − μ)[〈n(t )〉 − 〈n(0)〉] in the
system which originates from the coupling term in the Hamil-
tonian HC (in Appendix D, we discuss this in more detail).
By comparing the exact solution with the results of the dif-
ferent master equations, we find that both time-dependent
Redfield-I master equations, original and modified with the
effective temperature, are accurate for times shorter than the
characteristic timescale τc (18) (cf. Fig. 6). The accuracy for
short times holds still true even in the case of strong cou-

FIG. 5. Particle number 〈n(t )〉 as a function of time (logarithmic
scale). The lines show the various master equations and exact solu-
tion (49) with TB = 0,U = 0, 〈n(0)〉 = 0 and ε = μ + 10 � (top) or
ε = μ + 2 � (bottom).

pling � � |μ − ε|, where the exact solutions show significant
deviations from all Redfield master equations at late times
t � τc (cf. Fig. 6).

In the regime of intermediate times and strong coupling
�, the original Redfield-I master equation may lead to non-
physical values of the particle number below zero or above
one [cf. Fig. 5 (bottom)] where the Redfield-I master equa-
tion modified with T (t ) is superior (cf. Fig. 6). The opposite
happens for weak coupling � � |μ − ε| [cf. Fig. 5 (top) and
Fig. 6] where the effective temperature method overshoots,
as discussed in Sec. V. However, the differences between all
master equations and the exact solution vanish in that regime
as �τc = �

|μ−ε| → 0 [cf. Fig. 6 (inset)].
The above considerations extend qualitatively to the regime

kBTB � |μ−ε|
4 where the largest deviations between differ-

ent approaches are expected. In contrary, for temperatures
kBTB � |μ−ε|

4 , the original Redfield-I master equation no
longer reaches nonphysical values of the particle number and
becomes similar to the modified Redfield-I master equation.
Analogously to TB = 0, the differences between the master
equations and the exact solution vanish in the regime of high
TB as �τc = �

kBTB
→ 0.

VII. CONCLUSIONS

We considered a fermionic quantum system exchang-
ing particles with a thermal bath at fixed temperature TB.
By eliminating the bath from the description we derived
an approximation of the first Redfield equation with time-
dependent coefficients which offers the interpretation of a
time-dependent effective temperature T (t ) (25). For times
smaller than the characteristic time τc (18), the effective tem-
perature is very large, T (t ) → ∞, which can be explained
by the fact that at short timescales all energetically forbidden
transitions are allowed.5 At timescales much larger than τc,
the effective temperature T (t ) converges against the true envi-
ronment temperature TB. The use of the effective temperature

5An entirely different approach [57], based on the renormaliza-
tion flow in the environment’s temperature, demonstrated that the
short-time dynamics of observables shows a universal temperature-
independent behavior when the metallic reservoirs have a flat wide
band. This is in a perfect agreement with our observation of infinite
effective temperature which makes the renormalization flow trivial.
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FIG. 6. The normalized difference of the particle number between the exact solution (49) and the Redfield-I equation (left panel) or the
Redfield-I equation modified with T (t ) (right panel) as a function of time and of the difference between the chemical potential μ and the onsite
potential ε (both in logarithmic scales). The normalization is given by the difference between the exact and the static result. For both situations
(left and right), the normalized and non-normalized deviations are small if the time is smaller than the characteristic timescale τc. The black line
shows the correspondence between τc and |μ − ε|. The inset shows the non-normalized deviation between the particle number of the steady
state of the static Redfield master equation and the exact solution as a function of time. This value decays as |〈n(∞)〉exact − 〈n(∞)〉static| ≈
�/(2π |μ − ε|) and vanishes in the weak coupling limit. The system is described by (47) with bath temperature TB = 0.

T (t ) fixes also the problems of nonpositivity in the develop-
ment of the density matrix by the Redfield equation.

We demonstrated these effects on the example of a single
quantum dot with Coulomb interaction (Sec. V) which we
also compared with exact solutions for a system without the
Coulomb interaction, using it as a benchmark (Sec. VI). In
both cases we have shown a qualitative and quantitative agree-
ment between the solutions of the original time-dependent
Redfield master equation and its approximation based on the
time-dependent temperature. In the case without the Coulomb
interaction, we have shown a good agreement between the
solutions of the Redfield equations and the exact solution. For
short times, we see a perfect agreement even for parameters
for which the Redfield approximation generally does not hold
at later times. This confirms that the effective temperature
scheme offers an approximation which is as close to the exact
solution as the original Redfield equation and combines a per-
fect match at short times with being free of any mathematical
flaws at later times.

Previous versions of time-dependent effective temperatures
discussed in the literature [47–53] differ substantially from
the approach presented here. Most of them are related to
time-dependent quasiequilibrium temperatures of the system
or of the bath, based on their internal dynamics. In contrast,
in our approach the bath stays in thermal equilibrium at TB

and the effective bath temperature T (t ) refers to its observed
value from the perspective of the system, emerging as a
consequence of switching on the interaction and buildup of
correlations between the system and the bath. Our approach is

based on a sophisticated analytic approximation holding for a
wide range of temperatures TB, energies �E , and timescales
t (23)–(25), and agrees with the Redfield-I equation when
t − t0 � τc (18). Despite this, it preserves the original struc-
ture of the standard static results (24), replacing only TB

with T (t ) which, among others, can be practical in numerical
simulations.

The method of time-dependent effective bath temperature
leaves open space for further approximations and, therefore,
can be applied to various types of originally time-independent
master equations, beyond the secular approximation or
time-averaging methods. Its potential application to bosonic
environments remains open due to the qualitative differences
between the Bose and the Fermi statistics.
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APPENDIX A: FROM REDFIELD TO LINDBLAD

In the derivation of the Redfield-I equation (8) (cf. Sec. III),
at the lowest order in the system-environment coupling
strength, the preservation of positivity of the density matrix in
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the evolution gets lost. Here, we discuss its corrections leading
towards GKSL master equations [1,26,28,34,36–38].

For transition processes in the system involving the energy
differences �E and �E ′, we consider the blocks

M±
�E ,�E ′ (t )=

(
M±(t,�E ,�E ), M±(t,�E ,�E ′)
M±(t,�E ′,�E ), M±(t,�E ′,�E ′)

)

=
(

F±
�E ,TB

(t ), 1
2

[
F±

�E ,TB
(t )+F±

�E ′,TB
(t )
]+ i

2

[
G�E ,TB (t )−G�E ′,TB (t )

]
1
2

[
F±

�E ,TB
(t )+F±

�E ′,TB
(t )
]− i

2

[
G�E ,TB (t )−G�E ′,TB (t )

]
, F±

�E ′,TB
(t )

)
(A1)

built with M±(t,�E ,�E ′) ≡ M±
m (t,�E ,�E ′)/�m indepen-

dent of m [the coefficients F and G are defined in (17) and
(29), respectively]. If the coefficients F±

�E ,TB
(t ) become nega-

tive (cf. Fig. 1) the blocks M cease to be positive definite that
translates also into the total Liouville operator (13). There-
fore, we propose in this work the approximation (24) which
replaces them with new coefficients F±

�E ,TB
(t ) ∈ [0, 1]. For

consistency, we also replace the G±
�E ,TB

(t ) coefficients with
G±

�E ,TB
(t ) according to (31) (cf. Sec. IV).

However, in general, also the approximated matrices
M±

�E ,�E ′ (t ) are not positive definite for �E �= �E ′, having
one positive and one negative eigenvalue, which presents
another possible reason for the nonpositivity of the total
Liouville operator (13).

1. Secular approximation

The off-diagonal elements of M±
�E ,�E ′ (t ) correspond to

coherences between states with different energies (in the
Liouville space), which oscillate in time. The secular approx-
imation [1,28] averages out the oscillations and effectively
removes the off-diagonal terms by which

M±,sec
�E ,�E ′ (t ) =

(
F±

�E ,TB
(t ) 0

0 F±
�E ′,TB

(t )

)
(A2)

are obviously positive definite. It is equivalent to the
replacement of the coefficients M±

m,s in (14) with

Msec
± (t,�E ,�E ′) = δ�E ,�E ′F±

�E ,TB
(t ). (A3)

The Liouville superoperator (13) reduces then to the Lindblad
form which preserves positivity.

L̃ ρ =
⎡⎣∑

m,α�E

Lα
m(�E ) ρ Lα

m(�E )†−1

2

{
Lα

m(�E )†Lα
m(�E ), ρ

}⎤⎦
(A4)

with the secular Lindblad jump operators

L±,sec
m (t,�E ) =

√
�m

∑
i, j

δ±�E ,Ei−Ej

×
√
F+

Ei−Ej ,TB
(t ) |Ei〉〈Ei|c±

m |Ej〉〈Ej | (A5)

defined for each energy difference �E = Ei − Ej appearing
in the spectrum of the Hamiltonian HS . The double sum
runs over all eigenstates |El〉 of the system Hamiltonian HS

with eigenenergies El . As we see, the secular approximation
automatically removes the imaginary parts G�E ,TB (t ).

2. Coherent approximation

Because the secular approximation removes too much in-
formation and can miss important physics, we developed in
[26,34], along the lines of [35–38], the coherent approxima-
tion as the least invasive method of restoring positivity. The
arithmetic mean of the real parts in the off-diagonal terms
of M±

�E ,�E ′ (t ) is replaced by the geometric mean while the
imaginary parts are removed6

M±,coh
�E ,�E ′ (t )

=

⎛⎜⎝ F±
�E ,TB

(t ),
√
F±

�E ,TB
(t )F±

�E ′,TB
(t )√

F±
�E ,TB

(t )F±
�E ′,TB

(t ), F±
�E ′,TB

(t )

⎞⎟⎠.

(A6)

In this way, the negative eigenvalue gets shifted up to zero
while the diagonal elements, directly influencing energy pop-
ulations, stay untouched. The Liouville operator (A4) is then
given in terms of the coherent Lindblad jump operators

L±,coh
m (t ) =

√
�m

∑
i, j

√
F+

Ei−Ej ,TB
(t ) |Ei〉〈Ei|c±

m |Ej〉〈Ej |.

(A7)
They are equal to coherent sums of the secular jump operators
L±,coh

m (t ) = ∑
�E L±,sec

m (t,�E ) over the spectrum of the en-
ergy differences which motivates their name. For more details
regarding their derivation and discussion of their properties
we refer to [34, Appendix A].

APPENDIX B: BEYOND THE WIDE-BAND LIMIT

In the wide-band limit, where �(ω) is assumed constant
everywhere, we find for the coupling coefficients the finite

6The replacement is motivated by the sign of the smallest
eigenvalue of M±

�E ,�E ′ which is proportional to G2 − A2 −
�G2 � 0 where G is the geometric mean, A is the arithmetic
mean of F±

�E ,TB
(t ) and F±

�E ′,TB
(t ) (with G2 � A2) and �G =

[G�E ,TB (t ) − G�E ′,TB (t )]/2, present in its off diagonals. Replacing
A with G and setting �G = 0 in (A1) lifts the negative eigenvalue
exactly to zero.
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FIG. 7. Coefficients F α
�E ,TB

(t ) with α = − (solid lines) and α =
+ (dashed lines) as functions of time. The black lines show Fα

�E ,TB
(t )

in the wide-band limit [cf. (17)] while other lines show F α
�E ,TB

(t )
for the Lorentzian (B1) with �� = 2(�E − μ) = 2/τc (orange) or
�� = 10(�E − μ) = 10/τc (blue). The temperature is TB = 0 and
�E − μ > 0.

short-time limit limt→t0 A±
m (t,�E ) = �m/2. For any inte-

grable function �(ω), however, the coefficients must vanish
at short times limt→t0 A±

m (t,�E ) = 0 since |A±
m (t,�E )| �

‖�m‖1(t − t0)/π with ‖�m‖1 the L1 norm. Consequently,
Eqs. (16), (17), (28), and (29) cannot hold for very short
times, t − t0 � 1/‖�m‖1. In the particular example of a
Lorentz-type distribution

�m(ω) = �m�2
�

�2
� + (�E − ω)2

, ‖�m‖1 = π �m�� (B1)

the width �� determines the scale of agreement with the
wide-band limit, namely, for t − t0 �1/�� the coefficients
A±

m (t,�E ) become well approximated by the wide-band limit
(cf. Fig. 7). (For more general �m(ω), the conditions hold
analogously with �� determined by the variation of �(ω)
[27, Sec. 4].) If additionally �� � 1/τc = max(kBTB, |�E −
μ|) � �m, the effects of the time-dependent temperature T (t )
become relevant.

APPENDIX C: DERIVATION OF THE
T (t ) APPROXIMATION

In order to derive the approximation (23) we first need to
introduce a useful similarity.

1. Functional similarity

There holds an astonishing similarity between the two
hyperbolic functions

x

sinh(x)
≈ 1

cosh2(4x/π2)
, (C1)

as shown in Fig. 8. Despite intensive (re)search and discussion
[58] we did not succeed in providing any elementary proof of
it.7 The constant 4/π2 is chosen by the requirement that both

7The Taylor expansions of the reciprocals of both functions are
very close to each other and grow exponentially fast. By this, both

FIG. 8. Astonishing similarity between x/ sinh(x) (orange) and
1/ cosh2(4x/π 2) (black) with their difference in the inset (blue).

functions have equal integrals over [0,∞) which will have a
physical significance in our applications.

2. Estimation of the integral (20)

Here, we will apply the discovered functional similarity
(C1) to the integral (20). First we split the integrand into a
product and use the similarity (C1) to obtain

I = TB

∫ t−t0

0

sin(�E ′τ )

sinh(πTBτ )
dτ (C2)

= �E ′

π

∫ t−t0

0

πTBτ

sinh(πTBτ )

sin(�E ′τ )

�E ′τ
dτ

≈ �E ′

π

∫ t−t0

0

1

cosh2(4TBτ/π )

sin(�E ′τ )

�E ′τ
dτ (C3)

with �E ′ ≡ �E − μ and omit the Boltzmann constant for
shorter notation. In order to calculate this integral analyti-
cally, we use in the second factor the following trick: We
observe that the first factor contributes significantly only
for 4TBτ/π � 1 (and is negligible otherwise) where the
tanh function is almost linear so that we can replace τ ≈
π tanh(4TBτ/π )/(4TB). This brings us to

I ≈ �E ′

π

∫ t−t0

0

1

cosh2
( 4TBτ

π

) sin
(

π�E ′
4TB

tanh
( 4TBτ

π

))
π�E ′
4TB

tanh
( 4TBτ

π

) dτ

(C4)

which, by substituting u = π�E ′
4TB

tanh( 4TBτ
π

), leads to the result

I ≈ 1

π
Si

[
π�E ′

4TB
tanh

(
4TB(t − t0)

π

)]
, (C5)

with Si being the sine integral function. The result inherits,
however, the disadvantage of the exact coefficient F�E ,TB (t )
which overshoots beyond the allowed range, namely, |I| in-
creases above the value 1

2 which leads to problems (cf.
Sec. IV). But its behavior at early and late times t as well as
small and large �E values is the same as in the tanh formula
(23) which is free of that problem. Treating the excess oscil-
lations (cf. Fig. 9) as an error of the first-order approximation

functions must decay exponentially and their absolute difference
quickly gets negligibly small.
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FIG. 9. Compared are the exact value of the integral I
(C2) (orange), Si-tanh approximation (C5) (blue), and tanh-tanh
approximation (C6) (green). The temperature of the bath is
kBTB = 0.08|�E − μ|.

(in the coupling between the system and the bath) we want
to correct it to physically acceptable range bearing physical
interpretation. For this sake we observe that the sine integral
(Si) function is close to Si(πx)/π ≈ tanh(2x)/2 which builds
the Fermi function and stays in the proper range (cf. Fig. 10).
That replacement delivers the final approximation

I ≈ 1

2
tanh

[
�E ′

2TB
tanh

(
4TB(t − t0)

π

)]
(C6)

which, technically, presents our main result (23). The connec-
tion to the Fermi function is an essential point which allows us
to interpret the final result, used in F±

�E ,TB
(t ) (17), as the Fermi

distribution with modified, time-dependent temperature T (t )
(25).

An alternative way to motivate this approximation [59,
Chap. 3] (much simpler to derive but not uniform in �E ) is
to introduce the effective temperature by matching the slopes
of the Fermi distribution and of the coefficient F−

�E ,TB
(t ) at

�E = μ

1

4T (t )
= ∂F−

�E ,TB
(t )

∂�E

∣∣∣∣∣
�E=μ

=
∫ t−t0

0

TBτ dτ

sinh(πTBτ )
. (C7)

Using again the astonishing similarity x/ sinh(x) ≈
1/ cosh2(4x/π2) [cf. (C1) in Appendix C 1], (25) follows.

FIG. 10. Comparison of Si(πx)/π (orange) with tanh(2x)/2
(blue) as functions of x. The maximal difference amounts ≈0.11 and
vanishes for small and for large x.

FIG. 11. Comparison of Cin(x) + Re[ψ (1/2)] (orange) with
Re[ψ (1/2 + 2ix/π 2)] (blue) as functions of x.

3. Estimation of the integral (29)

Applying the same approximations as discussed in
Appendix C 2 to the integral (29), we derive

G�E ,TB (t ) = TB

∫ t−t0

0

1 − cos(�E ′τ )

sinh(πTBτ )
dτ

≈ �E ′

π

∫ t−t0

0

πTBτ

cosh2(4TBτ/π )

1 − cos(�E ′τ )

�E ′τ
dτ

≈ �E ′

π

∫ t−t0

0

1

cosh2
( 4TBτ

π

)
×

1 − cos
(

π�E ′
4TB

tanh
( 4TBτ

π

))
π�E ′
4TB

tanh
( 4TBτ

π

) dτ

= 1

π
Cin

[
π�E ′

4TB
tanh

(
4TB(t − t0)

π

)]
(C8)

with �E ′ ≡ �E − μ and omitting the Boltzmann constant for
shorter notation. The cosine integral function is defined by

Cin(x) =
∫ x

0

1 − cos(t )

t
dt (C9)

and is close to Cin(x) ≈ Re[ψ (1/2 + 2ix/π2) − ψ (1/2)] (cf.
Fig. 11) where ψ is the digamma function [55, Sec. 6.3] which
builds G�E ,TB (∞) [59, Ch. 3]. Using this replacement, we end
up with the approximation

G�E ,TB (t )

≈ 1

π
Re

{
ψ

[
1

2
+ i

�E ′

2πTB
tanh

(
4TB(t − t0)

π

)]
− ψ

(
1

2

)}
(C10)

which is identical to (31).

APPENDIX D: CORRELATIONS BETWEEN
SYSTEM AND BATH

For the non-Coulomb interacting system described by (47),
it is possible to give not only an exact expression of the
quantum dot annihilation operator cH(t ) [cf. (48)], but also
an exact expression of the bath annihilation operators

bk,H(t ) = e−iεkt bk − i γk

∫ t

0
cH(s)e−iεk (t−s)ds, (D1)
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FIG. 12. Particle current I (εk ) (top) and the coupling energy
EC(εk ) (bottom) as functions of the energy of the bath modes εk and
time t . The inset (top) shows the particle number of the system as a
function of time. We consider a system given by the Hamiltonian (47)
with the parameters TB = 0 and ε = μ − 2� < μ and an initially
empty dot. The oscillations of off-resonant tunneling processes are
given by ei(εk−ε)t .

derived from the Heisenberg’s equation of motion. This
enables us to calculate the correlation 〈c†bk〉 between the
quantum dot and a bath mode with energy εk , of which the
imaginary part gives the single-mode particle current

IN (εk ) = 2 Im[γk〈c†bk〉] (D2)

from the bath mode k to the quantum dot. Summing IN (εk )
over all modes k in the bath gives the total particle cur-
rent satisfying the balance equation ∂t 〈c†c〉 = ∑

k I (εk ). The
real part of the correlation corresponds to the single-mode
coupling energy

EC (εk ) = 2 Re[γk〈c†bk〉] (D3)

and the sum over all modes k in the bath gives the total
coupling energy 〈HC〉 = ∑

k EC (εk ).
Let us first consider an initial state different from the

ground state of the quantum dot at TB = 0 (in contrast to
Fig. 5) in order to better see the relaxation process to the
ground state. Let ε < μ and an initial particle number be
〈n(0)〉 = 0. In Fig. 12, the quantities IN (εk ) and EC (εk ) are

FIG. 13. Same as in Fig. 12 with the energy ε = μ + 2� > μ.

shown as functions of time and energy εk . From the conserva-
tion of energy for the quantum dot and bath alone, HS + HB,
the current would flow only at the energy level εk = ε but
by including also the coupling energy HC , the off-resonant
currents at εk �= ε may appear. Bath electrons with εk < ε

reduce the coupling energy EC (εk ) (cf. blue shading in Fig. 12,
bottom) while electrons with εk > ε increase the coupling
energy EC (εk ) (cf. red shading in Fig. 12, bottom) in time.
These processes lead to relaxation towards the ground state of
the quantum dot 〈n〉 = 1 (cf. Fig. 12, inset), with a small devi-
ation, 〈n〉 < 1, caused by the off-resonant tunneling processes
from the quantum dot back to bath states above the Fermi
edge at εk = μ. In order to satisfy the energy conservation, the
coupling energies EC (εk ) for εk > μ must become negative
(cf. blue shading in Fig. 12, bottom). In consequence, the final
state lies energetically higher than the ground state.

Finally, we consider a situation similar to the one shown
in Fig. 5 with the quantum dot initially in its ground state
〈n(0)〉 = 0 for ε > μ. Here, the tunneling processes are
not peaked around εk ≈ ε but around the Fermi level with
off-resonant current from states below the Fermi level into the
quantum dot (cf. red shading in Fig. 13, top). This also leads
to an energy increase in the quantum dot that is compensated
by the decrease of the coupling energies EC (εk ) to negative
values for states below the Fermi edge (cf. blue shading in
Fig. 13, bottom).
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